
List Iterators
Lecture 34

Section 16.5

Robb T. Koether

Hampden-Sydney College

Mon, Apr 14, 2017

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 1 / 28



1 Sequential Access

2 List Iterators

3 The Iterator Class

4 Reverse Iterators

5 Assignment

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 2 / 28



Outline

1 Sequential Access

2 List Iterators

3 The Iterator Class

4 Reverse Iterators

5 Assignment

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 3 / 28



Sequential Access of List Members

A for Loop
for (int i = 0; i < list.size(); i++)

list[i] = 0;

Consider the for loop above.
How efficient is it if list is an ArrayList?
How efficient is it if list is a LinkedList?
Notice that we are accessing the members of the list sequentially.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 4 / 28



Outline

1 Sequential Access

2 List Iterators

3 The Iterator Class

4 Reverse Iterators

5 Assignment

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 5 / 28



List Iterators

Definition (List Iterator)
A list iterator is an object that is associated with a list and refers to a
position in that list.

The iterator uses the most efficient means available to do this,
depending on the type of list.
An array list iterator uses an index.
A linked list iterator uses a node pointer.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 6 / 28



Advantages of Iterators

30 50 60 10 90 70 20 40 80

Iterator Iterator

Since the iterator holds a position within the list, it can readily
access that position’s successor, thereby greatly improving
sequential access.
Furthermore, as a separate object, we may create as many
iterators for a list as we like.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 7 / 28



List Iterator Behavior

The iterator begins at one end of the list.
The iterator advances one element at a time.
The iterator stops when it moves beyond the other end of the list.
Forward iterators advance from head to tail.
Reverse iterators advance from tail to head.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 8 / 28



List Iterator Behavior

The list elements

1st position
beyond the

list

30 50 60 10 90 70 20 40 80

The list of elements

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 9 / 28



List Iterator Behavior

The list elements

1st position
beyond the

list

30 50 60 10 90 70 20 40 80

Iterator

The (forward) iterator begins at the head.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 9 / 28



List Iterator Behavior

The list elements

1st position
beyond the

list

30 50 60 10 90 70 20 40 80

Iterator

Then it advances to position 1.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 9 / 28



List Iterator Behavior

The list elements

1st position
beyond the

list

30 50 60 10 90 70 20 40 80

Iterator

Then to position 2.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 9 / 28



List Iterator Behavior

The list elements

1st position
beyond the

list

30 50 60 10 90 70 20 40 80

Iterator

And so on...

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 9 / 28



List Iterator Behavior

The list elements

1st position
beyond the

list

30 50 60 10 90 70 20 40 80

Iterator

And so on...

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 9 / 28



List Iterator Behavior

The list elements

1st position
beyond the

list

30 50 60 10 90 70 20 40 80

Iterator

And so on...

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 9 / 28



List Iterator Behavior

The list elements

1st position
beyond the

list

30 50 60 10 90 70 20 40 80

Iterator

And so on...

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 9 / 28



List Iterator Behavior

The list elements

1st position
beyond the

list

30 50 60 10 90 70 20 40 80

Iterator

And so on...

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 9 / 28



List Iterator Behavior

The list elements

1st position
beyond the

list

30 50 60 10 90 70 20 40 80

Iterator

And so on...

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 9 / 28



List Iterator Behavior

The list elements

1st position
beyond the

list

30 50 60 10 90 70 20 40 80

Iterator

Until it goes beyond the last position.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 9 / 28



Outline

1 Sequential Access

2 List Iterators

3 The Iterator Class

4 Reverse Iterators

5 Assignment

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 10 / 28



The Iterator Class

We create the LinkedListwIter class as a subclass of the
LinkedList class.
We define the Iterator class within the LinkedListwIter
class.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 11 / 28



The Iterator Class

The Iterator Class
class LinkedListwIter : public LinkedList
{
// Iterator class definition

public:
class Iterator
{

public:
Iterator();

...
};

public:
// LinkedListwIter member functions
private:
// LinkedListwIter data members

};

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 12 / 28



The Iterator Class

The Iterator Class
class LinkedListwIter : public LinkedList
{
// Iterator class definition

public:
class Iterator
{

public:
Iterator();

...
};

public:
// LinkedListwIter member functions
private:
// LinkedListwIter data members

};

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 13 / 28



The Iterator Class

This places the Iterator class within the scope of the
LinkedListwIter class.
Therefore, the full name if the Iterator class is
LinkedListwIter<T>::Iterator

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 14 / 28



List Iterator Data Members

List Iterator Data Members
const LinkedList<T>* m_list;
LinkedListNode<T>* m_node;

m_list – A pointer to the associated list.
m_node – A pointer to a node in the associated list.
The data members have protected access.
The m_list data member is a constant.
Therefore, it may be set only when the Iterator is constructed.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 15 / 28



List Iterator Member Functions

List Iterator Member Functions
Iterator(const LinkedListwIter& lst, LinkedListNode* p);
bool isEqual(const Iterator& it) const;

Iterator(LinkedListwIter, LinkedListNode*) –
Constructs an iterator associated with a specified list.
isEqual() – Determines whether two iterators are equal.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 16 / 28



List Iterator Member Functions

List Iterator Member Functions
T& operator*();
Iterator& operator++();

operator*() – Returns the list value pointed to by the iterator.
operator++() – Advances the iterator to the next list element.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 17 / 28



List Iterator Member Functions

List Iterator Member Functions
bool operator==(const Iterator& it) const;
bool operator!=(const Iterator& it) const;

operator==() – Compares two iterators for equality.
operator!=() – Compares two iterators for inequality.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 18 / 28



LinkedListwIter Member Functions

LinkedListwIter Member Functions
Iterator begin() const;
Iterator end() const;

begin() – Returns a new iterator set to the beginning of this list.
end() – Returns a new iterator set to the end of this list.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 19 / 28



Sequential Access with Iterators

A for Loop
typedef LinkedListwIter<int>::Iterator Iterator;
for (Iterator it = list.begin(); it != list.end(); ++it)

*it = 0;

Now consider the for loop again.
How efficient is it if list is an ArrayListwIter?
How efficient is it if list is a LinkedListwIter?

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 20 / 28



Additional List Member Functions

Additional List Member Functions
T element(const Iterator& curr);
T& element(const Iterator& curr);

T element() const – Returns a copy of the list element that
the Iterator is pointing to.
T& element() – Returns a reference to the list element that the
Iterator is pointing to.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 21 / 28



Additional List Member Functions

Additional List Member Functions
T operator[](Iterator& curr) const;
T& operator[](Iterator& curr);

T operator[]() const – Returns a copy of the list element
that the Iterator is pointing to.
T& operator[]() – Returns a reference to the list element that
the Iterator is pointing to.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 22 / 28



Additional List Member Functions

Additional List Member Functions
Iterator searchIter(const T& value);
void sortIter();

searchIter() – Searches for the specified value and returns an
Iterator to it if it is found. If it is not found, then the Iterator is equal
to end().
sortIter() – Sorts the list by using Iterators rather than
indexes.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 23 / 28



Decrementing an Iterator

We can use the operator -- to back up to the previous list
member.
For an ArrayList iterator,

How would we do this?
What would happen if we were at the head of the list?

For a LinkedList iterator,
How would we do this?
What would happen if we were at the head of the list?

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 24 / 28



Outline

1 Sequential Access

2 List Iterators

3 The Iterator Class

4 Reverse Iterators

5 Assignment

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 25 / 28



Reverse Iterators

Definition (Reverse Iterator)
A reverse iterator is an iterator that works in the opposite direction.

What does it mean for a reverse iterator to be at the “beginning” of
a list?
What does it mean for a reverse iterator to be at the “end” of a list?
How would we increment a reverse iterator?
How would we decrement a reverse iterator?

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 26 / 28



Outline

1 Sequential Access

2 List Iterators

3 The Iterator Class

4 Reverse Iterators

5 Assignment

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 27 / 28



Assignment

Homework
Read Section 16.5.

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 28 / 28


	Sequential Access
	List Iterators
	The Iterator Class
	Reverse Iterators
	Assignment

