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Sequential Access of List Members

A for Loop
for (int i = 0; i < list.size(); i++)

list[i] = 0;

Consider the for loop above.
How efficient is it if list is an ArrayList?
How efficient is it if list is a LinkedList?
Notice that we are accessing the members of the list sequentially.
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List Iterators

Definition (List Iterator)
A list iterator is an object that is associated with a list and refers to a
position in that list.

The iterator uses the most efficient means available to do this,
depending on the type of list.
An array list iterator uses an index.
A linked list iterator uses a node pointer.
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Advantages of Iterators
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Iterator Iterator

Since the iterator holds a position within the list, it can readily
access that position’s successor, thereby greatly improving
sequential access.
Furthermore, as a separate object, we may create as many
iterators for a list as we like.
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List Iterator Behavior

The iterator begins at one end of the list.
The iterator advances one element at a time.
The iterator stops when it moves beyond the other end of the list.
Forward iterators advance from head to tail.
Reverse iterators advance from tail to head.
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List Iterator Behavior
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List Iterator Behavior
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The (forward) iterator begins at the head.
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List Iterator Behavior

The list elements

1st position
beyond the

list

30 50 60 10 90 70 20 40 80

Iterator

Then it advances to position 1.
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Then to position 2.
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And so on...
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List Iterator Behavior
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Until it goes beyond the last position.
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The Iterator Class

We create the LinkedListwIter class as a subclass of the
LinkedList class.
We define the Iterator class within the LinkedListwIter
class.
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The Iterator Class

The Iterator Class
class LinkedListwIter : public LinkedList
{
// Iterator class definition

public:
class Iterator
{

public:
Iterator();

...
};

public:
// LinkedListwIter member functions
private:
// LinkedListwIter data members

};
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The Iterator Class

This places the Iterator class within the scope of the
LinkedListwIter class.
Therefore, the full name if the Iterator class is
LinkedListwIter<T>::Iterator
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List Iterator Data Members

List Iterator Data Members
const LinkedList<T>* m_list;
LinkedListNode<T>* m_node;

m_list – A pointer to the associated list.
m_node – A pointer to a node in the associated list.
The data members have protected access.
The m_list data member is a constant.
Therefore, it may be set only when the Iterator is constructed.
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List Iterator Member Functions

List Iterator Member Functions
Iterator(const LinkedListwIter& lst, LinkedListNode* p);
bool isEqual(const Iterator& it) const;

Iterator(LinkedListwIter, LinkedListNode*) –
Constructs an iterator associated with a specified list.
isEqual() – Determines whether two iterators are equal.
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List Iterator Member Functions

List Iterator Member Functions
T& operator*();
Iterator& operator++();

operator*() – Returns the list value pointed to by the iterator.
operator++() – Advances the iterator to the next list element.
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List Iterator Member Functions

List Iterator Member Functions
bool operator==(const Iterator& it) const;
bool operator!=(const Iterator& it) const;

operator==() – Compares two iterators for equality.
operator!=() – Compares two iterators for inequality.
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LinkedListwIter Member Functions

LinkedListwIter Member Functions
Iterator begin() const;
Iterator end() const;

begin() – Returns a new iterator set to the beginning of this list.
end() – Returns a new iterator set to the end of this list.
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Sequential Access with Iterators

A for Loop
typedef LinkedListwIter<int>::Iterator Iterator;
for (Iterator it = list.begin(); it != list.end(); ++it)

*it = 0;

Now consider the for loop again.
How efficient is it if list is an ArrayListwIter?
How efficient is it if list is a LinkedListwIter?
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Additional List Member Functions

Additional List Member Functions
T element(const Iterator& curr);
T& element(const Iterator& curr);

T element() const – Returns a copy of the list element that
the Iterator is pointing to.
T& element() – Returns a reference to the list element that the
Iterator is pointing to.
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Additional List Member Functions

Additional List Member Functions
T operator[](Iterator& curr) const;
T& operator[](Iterator& curr);

T operator[]() const – Returns a copy of the list element
that the Iterator is pointing to.
T& operator[]() – Returns a reference to the list element that
the Iterator is pointing to.
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Additional List Member Functions

Additional List Member Functions
Iterator searchIter(const T& value);
void sortIter();

searchIter() – Searches for the specified value and returns an
Iterator to it if it is found. If it is not found, then the Iterator is equal
to end().
sortIter() – Sorts the list by using Iterators rather than
indexes.
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Decrementing an Iterator

We can use the operator -- to back up to the previous list
member.
For an ArrayList iterator,

How would we do this?
What would happen if we were at the head of the list?

For a LinkedList iterator,
How would we do this?
What would happen if we were at the head of the list?

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 24 / 28



Outline

1 Sequential Access

2 List Iterators

3 The Iterator Class

4 Reverse Iterators

5 Assignment

Robb T. Koether (Hampden-Sydney College) List Iterators Mon, Apr 14, 2017 25 / 28



Reverse Iterators

Definition (Reverse Iterator)
A reverse iterator is an iterator that works in the opposite direction.

What does it mean for a reverse iterator to be at the “beginning” of
a list?
What does it mean for a reverse iterator to be at the “end” of a list?
How would we increment a reverse iterator?
How would we decrement a reverse iterator?
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Assignment

Homework
Read Section 16.5.
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